排序

用最少数量的箭引爆气球

Q:找边界射爆气球

输入:points = [[10,16],[2,8],[1,6],[7,12]]
输出:2

关键点

  • 排序,找右边界
  • 贪心
public int findMinArrowShots(int[][] points) {
    if (points.length == 0) {
        return 0;
    }
    Arrays.sort(points, new Comparator<int[]>() {
        public int compare(int[] point1, int[] point2) {
            if (point1[1] > point2[1]) {
                return 1;
            } else if (point1[1] < point2[1]) {
                return -1;
            } else {
                return 0;
            }
        }
    });
    //[[1,6],[2,8],[7,12],[10,16]]
    int pos = points[0][1];
    int ans = 1;
    for (int[] balloon: points) {
        if (balloon[0] > pos) {//不断改变右边界
            pos = balloon[1];
            ++ans;
        }
    }
    return ans;
}

合并边界

Q:以数组 intervals 表示若干个区间的集合,其中单个区间为 intervals[i] = [starti, endi] 。请你合并所有重叠的区间,并返回一个不重叠的区间数组,该数组需恰好覆盖输入中的所有区间

输入:intervals = [[1,3],[2,6],[8,10],[15,18]]
输出:[[1,6],[8,10],[15,18]]

关键点

  • 排序,找右边界
  • 贪心
public int[][] merge(int[][] intervals) {
    if (intervals.length == 0) {
        return new int[0][2];
    }
    Arrays.sort(intervals, new Comparator<int[]>() {
        public int compare(int[] interval1, int[] interval2) {
            return interval1[0] - interval2[0];
        }
    });
    List<int[]> merged = new ArrayList<int[]>();
    for (int i = 0; i < intervals.length; ++i) {
        int L = intervals[i][0], R = intervals[i][1];
        if (merged.size() == 0 || merged.get(merged.size() - 1)[1] < L) {
            merged.add(new int[]{L, R});
        } else {
            merged.get(merged.size() - 1)[1] = Math.max(merged.get(merged.size() - 1)[1], R);
        }
    }
    return merged.toArray(new int[merged.size()][]);
}

经典排序

image

冒泡排序

image

    public static int[] bubbleSort(int[] array) {
        if (array.length == 0)
            return array;
        for (int i = 0; i < array.length; i++){
            for (int j = 0; j < array.length - 1 - i; j++)//后i个元素已经排好序
                if (array[j + 1] < array[j]) {
                    int temp = array[j + 1];
                    array[j + 1] = array[j];
                    array[j] = temp;
                }
        }
        return array;
    }

选择排序

image

    public static int[] selectionSort(int[] array) {
        if (array.length == 0)
            return array;
        for (int i = 0; i < array.length; i++) {
            int minIndex = i;
            for (int j = i; j < array.length; j++) {
                if (array[j] < array[minIndex]) //找到最小的数
                    minIndex = j; //将最小数的索引保存
            }
            int temp = array[minIndex];
            array[minIndex] = array[i];
            array[i] = temp;
        }
        return array;
    }

插入排序

image

    public static int[] insertionSort(int[] array) {
        if (array.length == 0)
            return array;
        int current;
        for (int i = 0; i < array.length - 1; i++) {
            current = array[i + 1];
            int preIndex = i;
            while (preIndex >= 0 && current < array[preIndex]) {
                array[preIndex + 1] = array[preIndex];
                preIndex--;
            }
            array[preIndex + 1] = current;
        }
        return array;
    }

希尔排序

image

    public static int[] ShellSort(int[] array) {
        int len = array.length;
        int temp, gap = len / 2;
        while (gap > 0) {
            for (int i = gap; i < len; i++) {
                temp = array[i];
                int preIndex = i - gap;
                while (preIndex >= 0 && array[preIndex] > temp) {
                    array[preIndex + gap] = array[preIndex];
                    preIndex -= gap;
                }
                array[preIndex + gap] = temp;
            }
            gap /= 2;
        }
        return array;
    }

归并排序

image

    public static int[] MergeSort(int[] array) {
        if (array.length < 2) return array;
        int mid = array.length / 2;
        int[] left = Arrays.copyOfRange(array, 0, mid);
        int[] right = Arrays.copyOfRange(array, mid, array.length);
        return merge(MergeSort(left), MergeSort(right));
    }
    
    public static int[] merge(int[] left, int[] right) {
        int[] result = new int[left.length + right.length];
        for (int index = 0, i = 0, j = 0; index < result.length; index++) {
            if (i >= left.length)
                result[index] = right[j++];
            else if (j >= right.length)
                result[index] = left[i++];
            else if (left[i] > right[j])
                result[index] = right[j++];
            else
                result[index] = left[i++];
        }
        return result;
    }

快速排序

image

    public static int[] QuickSort(int[] array, int start, int end) {
        if (array.length < 1 || start < 0 || end >= array.length || start > end) return null;
        int smallIndex = partition(array, start, end);
        if (smallIndex > start)
            QuickSort(array, start, smallIndex - 1);
        if (smallIndex < end)
            QuickSort(array, smallIndex + 1, end);
        return array;
    }
    /**
     * 快速排序算法——partition
     * @param array
     * @param start
     * @param end
     * @return
     */
    public static int partition(int[] array, int start, int end) {
        int pivot = (int) (start + Math.random() * (end - start + 1));
        int smallIndex = start - 1;
        swap(array, pivot, end);
        for (int i = start; i <= end; i++)
            if (array[i] <= array[end]) {
                smallIndex++;
                if (i > smallIndex)
                    swap(array, i, smallIndex);
            }
        return smallIndex;
    }

    /**
     * 交换数组内两个元素
     * @param array
     * @param i
     * @param j
     */
    public static void swap(int[] array, int i, int j) {
        int temp = array[i];
        array[i] = array[j];
        array[j] = temp;
    }

堆排序

    public static int[] HeapSort(int[] array) {
        len = array.length;
        if (len < 1) return array;
        //1.构建一个最大堆
        buildMaxHeap(array);
        //2.循环将堆首位(最大值)与末位交换,然后在重新调整最大堆
        while (len > 0) {
            swap(array, 0, len - 1);
            len--;
            adjustHeap(array, 0);
        }
        return array;
    }
    /**
     * 建立最大堆
     *
     * @param array
     */
    public static void buildMaxHeap(int[] array) {
        //从最后一个非叶子节点开始向上构造最大堆
        for (int i = (len/2 - 1); i >= 0; i--) { //感谢 @让我发会呆 网友的提醒,此处应该为 i = (len/2 - 1) 
            adjustHeap(array, i);
        }
    }
    /**
     * 调整使之成为最大堆
     *
     * @param array
     * @param i
     */
    public static void adjustHeap(int[] array, int i) {
        int maxIndex = i;
        //如果有左子树,且左子树大于父节点,则将最大指针指向左子树
        if (i * 2 < len && array[i * 2] > array[maxIndex])
            maxIndex = i * 2;
        //如果有右子树,且右子树大于父节点,则将最大指针指向右子树
        if (i * 2 + 1 < len && array[i * 2 + 1] > array[maxIndex])
            maxIndex = i * 2 + 1;
        //如果父节点不是最大值,则将父节点与最大值交换,并且递归调整与父节点交换的位置。
        if (maxIndex != i) {
            swap(array, maxIndex, i);
            adjustHeap(array, maxIndex);
        }
    }